c-Fos expression in GABAergic, serotonergic, and other neurons of the pontomedullary reticular formation and raphe after paradoxical sleep deprivation and recovery.
نویسندگان
چکیده
The brainstem contains the neural systems that are necessary for the generation of the state of paradoxical sleep (PS) and accompanying muscle atonia. Important for its initiation are the pontomesencephalic cholinergic neurons that project into the pontomedullary reticular formation and that we have recently shown increase c-Fos expression as a reflection of neural activity in association with PS rebound after deprivation in rats (Maloney et al. , 1999). As a continuation, we examined in the present study c-Fos expression in the pontomedullary reticular and raphe neurons, including importantly GABAergic neurons [immunostained for glutamic acid decarboxylase (GAD)] and serotonergic neurons [immunostained for serotonin (Ser)]. Numbers of single-labeled c-Fos+ neurons were significantly increased with PS rebound only in the pars oralis of the pontine reticular nuclei (PnO), where numbers of GAD+/c-Fos+ neurons were conversely significantly decreased. c-Fos+ neurons were positively correlated with PS, whereas GAD+/c-Fos+ neurons were negatively correlated with PS, suggesting that disinhibition of reticular neurons in the PnO from locally projecting GABAergic neurons may be important in the generation of PS. In contrast, through the caudal pons and medulla, GAD+/c-Fos+ cells were increased with PS rebound, covaried positively with PS and negatively with the electromyogram (EMG). In the raphe pallidus-obscurus, Ser+/c-Fos+ neurons were positively correlated, in a reciprocal manner to GAD+/c-Fos+ cells, with EMG, suggesting that disfacilitation by removal of a serotonergic influence and inhibition by imposition of a GABAergic influence within the lower brainstem and spinal cord may be important in the development of muscle atonia accompanying PS.
منابع مشابه
Homeostatic Changes in GABA and Acetylcholine Muscarinic Receptors on GABAergic Neurons in the Mesencephalic Reticular Formation following Sleep Deprivation
We have examined whether GABAergic neurons in the mesencephalic reticular formation (RFMes), which are believed to inhibit the neurons in the pons that generate paradoxical sleep (PS or REMS), are submitted to homeostatic regulation under conditions of sleep deprivation (SD) by enforced waking during the day in mice. Using immunofluorescence, we investigated first, by staining for c-Fos, whethe...
متن کاملDifferential c-Fos expression in cholinergic, monoaminergic, and GABAergic cell groups of the pontomesencephalic tegmentum after paradoxical sleep deprivation and recovery.
Multiple lines of evidence indicate that neurons within the pontomesencephalic tegmentum are critically involved in the generation of paradoxical sleep (PS). From single-unit recording studies, evidence suggests that unidentified but "possibly" cholinergic tegmental neurons discharge at higher rates during PS than during slow wave sleep or even waking and would thus play an active role, whereas...
متن کاملGABAergic neurons of the cat dorsal raphe nucleus express c-fos during carbachol-induced active sleep.
Serotonergic neurons of the dorsal raphe nucleus (DRN) cease firing during active sleep (AS, also called rapid-eye-movement sleep). This cessation of electrical activity is believed to play a 'permissive' role in the generation of AS. In the present study we explored the possibility that GABAergic cells in the DRN are involved in the suppression of serotonergic activity during AS. Accordingly, ...
متن کاملRole and origin of the GABAergic innervation of dorsal raphe serotonergic neurons.
Extracellular electrophysiological recordings in freely moving cats have shown that serotonergic neurons from the dorsal raphe nucleus (DRN) fire tonically during wakefulness, decrease their activity during slow wave sleep (SWS), and are nearly quiescent during paradoxical sleep (PS). The mechanisms at the origin of the modulation of activity of these neurons are still unknown. Here, we show in...
متن کاملEffect of Specific Lesion of Non Serotonergic Pathway on Neurons of Nucleus Raphe Magnus Morphology in Rat
Purpose: The nucleus raphe magnus (NRM) is a medullary nucleus containing serotonergic and non serotonergic neurons, both of which densely project to spinal cord. The goal of this study was to determine the role of these non serotonergic neurons in pain perception and their cytological changes after the specific lesion of bulbo-spinal serotonergic pathway. Materials and Methods: Male rats were...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 20 12 شماره
صفحات -
تاریخ انتشار 2000